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Introduction

• Here, we cover the asymptotic normality of the posterior
distribution and their consistency in large samples.

• This provides the connection to non-Bayesian approaches.
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4.1. Normal approximations to the posterior distributions

• Consider a unimodal and symmetric posterior p(θ|y).

Let θ̂ the mode of the distribution of θ|y, then by the Taylor’s
expansion :

log p(θ|y) ≈ log p(θ̂|y) + (θ − θ̂)>
[
d

dθ
log p(θ|y)

]
θ=θ̂

+
1
2

(θ − θ̂)>
[
d2

dθ2 log p(θ|y)

]
θ=θ̂

(θ − θ̂)

Since log p(θ̂|y) is constant, d
dθ log p(θ|y)

∣∣∣∣
θ=θ̂

= 0, and θ̂ → θ

p(θ|y) ≈ N(θ̂, [I (θ̂)]−1)

where I (θ) := − d2

dθ2
log p(θ|y) = −

∑n
i=1

d2

dθ2
log p(θ|yi ) is the

observed information.

5



4.1. Normal approximations to the posterior distributions

• Under the normal approximation, the posterior is summarized
by its mode θ̂ and the curvature of log posterior density I (θ̂).

• Roughly, one can say that θ̂ and I (θ̂) are sufficient statistics.
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4.1. Normal approximations to the posterior distributions

Example. Normal distribution
Assume a uniform prior for (µ, log σ).

Let y = (y1, · · · , yn) ∼ N(µ, σ2), i .i .d .

Then, the posterior distribution can be approximated as :

p(µ, log σ|y) ≈ N

((
µ̂

log σ̂

)
,

(
σ̂2/n 0
0 1/(2n)

))
where µ̂ = ȳ =

∑n
i=1 yi/n and σ̂2 =

∑n
i=1(yi − ȳ)/n.
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4.2. Large-sample theory

Recall that the posterior distribution is proportional to a
multiplication of likelihood and prior.

p(θ|y) ∝ p(θ)p(y |θ)
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4.2. Large-sample theory

If the sample size is large enough, then the likelihood dominates the
prior, because :

d2

dθ2 log p(θ|y)

∣∣∣∣
θ=θ̂

=
d2

dθ2 log p(θ̂) +
n∑

i=1

d2

dθ2 log p(yi |θ)

∣∣∣∣
θ=θ̂

Here, (absolute value of) the term of curvature of the likelihood
increases with order n (Appendix B).
Thus if the sample size is large, it dominates the first term of RHS
(prior) and else, prior has an impact on the posterior.
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4.3. Counterexamples to the theorems

• Then, what if the prior has an impact of the posterior, even
the sample size is large?

• Various counterexamples may exist, here introduces some
specific ones.
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4.3. Counterexamples to the theorems

• Nonidentified

Consider the model(
u

v

)
∼ N

((
0
0

)
,

(
1 ρ

ρ 1

))
Assume we only observe u from pair (u, v). Then the parameter ρ
is nonidentified.
In other words, since the data supply no information about ρ, the
posterior is the same as its prior.
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4.3. Counterexamples to the theorems

• Aliasing

Let y follows a bimodal Gaussian mixture as the following :

λ
1√
2πσ1

e−(y−µ1)2/2σ2
1 + (1− λ)

1√
2πσ2

e−(y−µ2)2/2σ2
2

This model is not identifiable. Thus we need some assumptions in
order to treat the parameter space to be identifiable; for example,
µ1 ≤ µ2.
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4.4. Frequency evaluations of Bayesian inferences

• Understanding frequentists’ estimation as a view of Bayesian.

• The asymptotic properties of estimates from non-Bayesian
approaches are also hold for the posterior.
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4.4. Frequency evaluations of Bayesian inferences

Let θ̂ an estimate (it can be the posterior mean, median or mode)
of the true parameter θ0. Then the following holds under mild
regularity conditions and with large sample size.

• Consistency : θ̂ → θ0

• Asymptotic unbiasedness :
(
E (θ̂|θ0)− θ0

)
/sd(θ̂|θ0)→ 0

• Efficiency : E ((θ̂ − θ0)2|θ0) ≤ E ((θ − θ0)2|θ0) for all θ.
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4.5. Bayesian interpretations of other statistical models

• What if the number of parameters is large?

Method of inference based on the likelihood alone can be improved
if real prior information is availble.
Examples

• Point estimates, confidence intervals

• Hypothesis testing

• Multiple comparisons
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4.5. Bayesian interpretations of other statistical models

Is unbiased estimators good if the sample size is small?

• Minimizing bias often occurs the increases in variance.

Example. (
θ

y

)
∼ N

((
160
160

)
,

(
σ 0.5
0.5 σ

))
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4.5. Bayesian interpretations of other statistical models

• The posterior mean E (θ(1)|y (1)) = 160 + 0.5(y (1) − 160) is
biased but with repeated sampling
E (y (2)|θ(1)) = 160 + 0.5(θ(1) − 160), it becomes

E (θ(2)|y (2)) = 160 + 0.5(y (2) − 160)

E (E (θ(2)|y (2))|θ(1)) = 160 + 0.5(E (y (2)|θ(1))− 160)

= 160 + 0.25(θ(1) − 160)

and so on.

• However, θ̂ = 160 + 2(y − 160) is unbiased but with high
variance if sample size is small (e.g., if y = 170, then θ̂ = 180).
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